Approximation of Matrix Rank Function and Its Application to Matrix Rank Minimization
نویسنده
چکیده
Matrix rank minimization problem is widely applicable in many fields such as control, signal processing and system identification. However, the problem is in general NP-hard, and it is computationally hard to solve directly in practice. In this paper, we provide a new kind of approximation functions for the rank of matrix, and the corresponding approximation problems can be used to approximate the matrix rank minimization problem within any level of accuracy. Furthermore, the monotonicity and the Fréchet derivative of the approximation functions are discussed. On this basis, we design a new method, which is called as successive projected gradient method, for solving the matrix rank minimization problem by using the projected gradient method to find the stationary point of a series of approximation problems. Finally, the convergence analysis and the preliminary numerical results of the successive projected gradient method for the rank minimization problem are given. Mathematics Subject Classifications: 65K05, 90C30
منابع مشابه
Approximation of rank function and its application to the nearest low-rank correlation matrix
The rank function rank(·) is neither continuous nor convex which brings much difficulty to the solution of rank minimization problems. In this paper, we provide a unified framework to construct the approximation functions of rank(·), and study their favorable properties. Particularly, with two families of approximation functions, we propose a convex relaxation method for the rank minimization p...
متن کاملAn approximation theory of matrix rank minimization and its application to quadratic equations
Matrix rank minimization problems are gaining plenty of recent attention in both mathematical and engineering fields. This class of problems, arising in various and acrossdiscipline applications, is known to be NP-hard in general. In this paper, we aim at providing an approximation theory for the rank minimization problem, and prove that a rank minimization problem can be approximated to any le...
متن کاملConvergence of fixed point continuation algorithms for matrix rank minimization
The matrix rank minimization problem has applications in many fields such as system identification, optimal control, low-dimensional embedding, etc. As this problem is NP-hard in general, its convex relaxation, the nuclear norm minimization problem, is often solved instead. Recently, Ma, Goldfarb and Chen proposed a fixed-point continuation algorithm for solving the nuclear norm minimization pr...
متن کاملAn accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...
متن کاملAn accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012